MathTeacherCoach.com

Rational Numbers

Unit 1 Lesson 1

Students will be able to:

- Understand informally that every number has a decimal expansion.
- Classify whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.
 - Order a set of rational numbers.

Key Vocabulary: Rational numbers Irrational numbers Integers Whole numbers Natural numbers

<u>A rational number</u> is a number that can be in the form $\frac{p}{q}$, where *p* and *q* are integers and $q \neq 0$.

A rational number can be made by dividing two integers, or it is a number that can be written as the ratio of two integers.

Rational Numbers

include fractions, terminating decimals, repeating decimals, integers, whole and natural numbers.

Irrational Numbers

include square roots that don't work out to be ratios (no perfect answers) and decimals that don't repeat but that never end.

Sample Problem 1: Identify each number as rational or irrational.

Sample Problem 1: Identify each number as rational or irrational.

а.	$\frac{-2}{4}$	Rational
	12.17	Rational
	$\sqrt{36}$	Rational
	√32	Irrational

Sample Problem 1: Identify each number as rational or irrational.

Sample Problem 1: Identify each number as rational or irrational.

b.	$\frac{18}{6}$	Rational
	$\pi = 3.141591$	Irrational
	√ 121	Rational
	$\sqrt{56}$	Irrational

Sample Problem 2: Write the numbers in order from least to greatest.

a. $\frac{1}{2}$, $\frac{2}{3}$, $\frac{2}{6}$, $\frac{-5}{6}$

a.
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{2}{6}$, $\frac{-5}{6}$
 $\frac{-5}{6} < \frac{2}{6} < \frac{1}{2} < \frac{2}{3}$

Sample Problem 2: Write the numbers in order from least to greatest.

b. -2.1, -2.13, -2.2, -2.123

Sample Problem 2: Write the numbers in order from least to greatest.

b. -2.1, -2.13, -2.2, -2.123

-2.2 < -2.13 < -2.123 < -2.1

c.
$$\frac{2}{3}$$
, $\frac{-1}{6}$, $\frac{5}{6}$, $\frac{-1}{2}$

c.
$$\frac{2}{3}$$
, $\frac{-1}{6}$, $\frac{5}{6}$, $\frac{-1}{2}$
 $\frac{-1}{2} < \frac{-1}{6} < \frac{2}{3} < \frac{5}{6}$

d. 4.1,
$$-4.1$$
, -3.50 , 3.5

Sample Problem 2: Write the numbers in order from least to greatest.

d. 4.1, -4.1, -3.50, 3.5

-4.1 < -3.50 < 3.5 < 4.1

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

a. 1.5
$$1\frac{1}{2}$$

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

b.
$$-\frac{2}{3}$$
 $\boxed{\frac{2}{3}}$

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

c. 4.9
$$\left[\right] - 3.4$$

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

d.
$$-3\frac{5}{6}$$
 4

Sample Problem 3: Graph each pair of numbers on the number line. Use the graph and write <, or > or = to compare the numbers.

a .	-0.5	
	1.6666	
	2.3	
	14.05	

a.	-0.5	terminating decimal
	1.6666	repeating decimal
	2.3	repeating decimal
	14.05	terminating decimal

b.	-0.131313	
	1.65	
	2. 21	
	-4.12	

b.	-0.131313	repeating decimal
	1.65	terminating decimal
	2. 21	repeating decimal
	-4.12	terminating decimal

