${ }_{x}^{+}$MathTeacherCoach.com

Rational Numbers
Unit 1 Lesson 1

Students will be able to:

- Understand informally that every number has a decimal expansion.
- Classify whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.
- Order a set of rational numbers.

Rational Numbers

Key Vocabulary:

Rational numbers
Irrational numbers

Integers

Whole numbers
Natural numbers

Rational Numbers

A rational number is a number that can be in the form $\frac{\boldsymbol{p}}{\boldsymbol{q}}$, where \boldsymbol{p} and \boldsymbol{q} are integers and $\boldsymbol{q} \neq \mathbf{0}$.

A rational number can be made by dividing two integers, or it is a number that can be written as the ratio of two integers.

Rational Numbers

Rational Numbers

Sample Problem 1: Identify each number as rational or irrational.

a.

$\frac{-2}{4}$	
$12.1 \overline{7}$	
$\sqrt{36}$	
$\sqrt{32}$	

Rational Numbers

Sample Problem 1: Identify each number as rational or irrational.

a.

$\frac{-2}{4}$	Rational
$\mathbf{1 2 . 1 \overline { 7 }}$	Rational
$\sqrt{36}$	Rational
$\sqrt{32}$	Irrational

Rational Numbers

Sample Problem 1: Identify each number as rational or irrational.

b.

$\frac{18}{6}$	
$\pi=3.141591 \ldots \ldots \ldots$	
$\sqrt{121}$	
$\sqrt{56}$	

Rational Numbers

Sample Problem 1: Identify each number as rational or irrational.

b.

$\frac{18}{6}$	Rational
$\pi=3.141591 \ldots \ldots \ldots$	Irrational
$\sqrt{121}$	Rational
$\sqrt{56}$	Irrational

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.a. $\frac{1}{2}$,
$\frac{2}{3}$,
$\frac{2}{6}$,
$\frac{-5}{6}$

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.$$
\begin{aligned}
& \text { a. } \frac{1}{2}, \frac{2}{3}, \frac{2}{6}, \quad \frac{-5}{6} \\
& \frac{-5}{6}<\frac{2}{6}<\frac{1}{2}<\frac{2}{3}
\end{aligned}
$$

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.$$
\text { b. }-2.1, \quad-2.13, \quad-2.2, \quad-2.123
$$

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.$$
\begin{gathered}
\text { b. }-2.1, \quad-2.13, \quad-2.2, \quad-2.123 \\
-2.2<-2.13<-2.123<-2.1
\end{gathered}
$$

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.c. $\frac{2}{3}$,
$\frac{-1}{6}$,
$\frac{5}{6}$,
-1
2

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.$$
\begin{aligned}
& \text { c. } \frac{2}{3}, \quad \frac{-1}{6}, \quad \frac{5}{6}, \quad \frac{-1}{2} \\
& \frac{-1}{2}<\frac{-1}{6}<\frac{2}{3}<\frac{5}{6}
\end{aligned}
$$

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.d. 4.1,
-4. 1,
-3.50,
3.5

Rational Numbers

Sample Problem 2: Write the numbers in order from least

 to greatest.$$
\begin{aligned}
& \text { d. } 4.1, \quad-4.1, \quad-3.50, \\
& \\
& -4.1<-3.50<3.5<4.1
\end{aligned}
$$

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.a. $1.5 \square 1 \frac{1}{2}$

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.a. $\quad 1.5=1 \frac{1}{2}$

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.b. $-\frac{2}{3} \square \frac{2}{3}$

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.c. $4.9 \square-3.4$

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.c. $4.9>-3.4$

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.d. $-3 \frac{5}{6} \square 4$

Rational Numbers

Sample Problem 3: Graph each pair of numbers on the

 number line. Use the graph and write $<$, or $>$ or $=$ to compare the numbers.d. $-3 \frac{5}{6}<4$

Rational Numbers

Sample Problem 4: Identify each decimal as repeating or terminating.

a.

-0.5	
1.6666	
$2 . \overline{3}$	
14.05	

Rational Numbers

Sample Problem 4: Identify each decimal as repeating or terminating.

a.

-0.5	terminating decimal
1.6666	repeating decimal
$2 . \overline{3}$	repeating decimal
14.05	terminating decimal

Rational Numbers

Sample Problem 4: Identify each decimal as repeating or terminating.

b.

$-0.131313 .$.	
1.65	
$2 . \overline{21}$	
-4.12	

Rational Numbers

Sample Problem 4: Identify each decimal as repeating or terminating.

b.

$-0.131313 .$.	repeating decimal
$\mathbf{1 . 6 5}$	terminating decimal
$2 . \overline{21}$	repeating decimal
-4.12	terminating decimal

